[1]陈佳袁,闫杰.基于ARMA模型的水文数据预测[J].浙江水利科技,2017,(06):027-30.[doi:10.13641/j.cnki.33-1162/tv.2017.06.007]
 CHEN Jia-yuan,YAN Jie.The Prediction of Hydrological Data Based on ARMA Model[J].Zhejiang Hydrotechnics,2017,(06):027-30.[doi:10.13641/j.cnki.33-1162/tv.2017.06.007]
点击复制

基于ARMA模型的水文数据预测
分享到:

《浙江水利科技》[ISSN:1008-701X/CN:33-1080/TV]

卷:
期数:
2017年06
页码:
027-30
栏目:
出版日期:
2017-11-25

文章信息/Info

Title:
The Prediction of Hydrological Data Based on ARMA Model
作者:
陈佳袁1 闫杰2
1. 桐乡市水利局, 浙江 桐乡 314500;
2. 中国电力工程顾问集团西北电力设计院有限公司, 陕西 西安 710075
Author(s):
CHEN Jia-yuan1 YAN Jie2
1. Tongxiang Water Conservancy Bureau, Tongxiang 314500, Zhejiang, China;
2. Northwest Electric Power Design Institute Co., Ltd. of China Power Engineering Consulting Group, Xi’an 710075, Shanxi, China
关键词:
水文数据ARMA定阶准则AIC遗传算法
Keywords:
hydrological dataARMAorder selection criteriaAICgenetic algorithm
分类号:
P333
DOI:
10.13641/j.cnki.33-1162/tv.2017.06.007
文献标志码:
A
摘要:
针对小样本水文数据序列难以准确预测的特点,将时间序列分析运用于水文数据的预测分析,研究基于AIC定阶准则和遗传算法定阶的ARMA模型,并将其运用于周期性水文数据的预测。根据模型建立的需要及数据周期性的特点,对原始数据进行季节差分等优化处理,并将建立的模型运用于某水文站流量数据的预测。结果表明,基于ARMA模型对流量数据的预测精度远远高于传统的神经网路模型,其中基于AIC准则定阶的模型比遗传算法定阶的模型精度高2.96%,从而为小样本水文数据的预测分析提供一种新的思路。
Abstract:
Because of the difficulty in the prediction of hydrological data for small samples,the article put forward a ARMA model which is used to analyze the periodic hydrological data based on AIC order selection criteria and genetic algorithm.According to the need of the model and the characteristics of data periodicity,the original data were optimized by the seasonal difference,and the model was applied to forecast the discharge data of a hydrological station.Results show that the accuracy of ARMA model is more higher than that of the traditional BP neural networks model,Furthermore,the accuracy of model based on AIC order selection criteria is 2.96% higher than that of the model based on genetic algorithm. Therefore,the article provides a new idea for the analysis of the hydrological data for small samples.

参考文献/References:

[1] 胡军华,唐德善,胡庆和.人工神经网络在径流长期预报中的应用[J].人民黄河,2005(9):26-27.
[2] 吴媛,刘国东,余姝萍,等.人工神经网络在水文资料插补延长中的应用[J].贵州地质,2005(3):68-71.
[3] 余开华.小波神经网络模型在河道流量水位预测中的应用[J]. 水资源与水工程学报,2013(2):204-208.
[4] 段春青,陈晓楠,韩黎明.遗传程序在水位流量关系拟合中的应用[J].中国农村水利水电,2009(6):54-55.
[5] 梁妍,夏乐天.时间序列ARMA模型的应用[J].重庆理工大学学报(自然科学),2012(8):106-109.
[6] 崔建国,赵云龙,董世良,等.基于遗传算法和ARMA模型的航空发电机寿命预测[J].航空学报,2011(8):1506-1511.

备注/Memo

备注/Memo:
收稿日期:2017-05-25。
作者简介:陈佳袁(1991-),男,工程师,硕士,主要从事水利工程管理工作。
更新日期/Last Update: 2017-11-28